Department of Mathematics M.A. Comprehensive/Ph.D. Qualifying Exam in Analysis Summer, 1990

Directions: Work any eight problems. You have three hours.

- 1. Let (X, \mathcal{N}, μ) be a measure space.
- (a) State the following theorems.
 - (i) Monotone Convergence Theorem
 - (ii) Fatou's Lemma
 - (iii) Dominated Convergence Theorem
- (b) Prove that (i) implies (ii).
- 2. Suppose $g \in L_1(\mathbb{R})$. Prove that for every $\epsilon > 0$ there exists $\delta > 0$ such that if $A \subseteq \mathbb{R}$ is measurable and $\lambda(A) < \delta$, then $|\int_A gd\lambda| < \epsilon$.
- 3. Let $\{f_k\}$ and f be non-negative measurable functions on \mathbb{R} . Suppose that for all $k, f_k(x) \leq f(x)$ a.e. on \mathbb{R} . Prove that $\lim_{k \to \infty} \int_{-\infty}^{\infty} f_k d\lambda = \int_{-\infty}^{\infty} f d\lambda$.
- 4. (a) Prove that if a sequence {f_k} in L_p(ℝ) converges to f ∈ L_p(ℝ) in the L_p norm, then {f_k} converges to f in measure.
 (b) Give an example of a sequence {f_k} in L_p(ℝ) such that {f_k} converges to f ∈ L_p in the L_p norm, but {f_k} does not converge pointwise to f.
- 5. Let $1 \le p < \infty$, and suppose $\{f_k\}$ is a sequence in $L_p([1,\infty))$ which converges to $f \in L_p([1,\infty))$ in the L_p norm. Prove that

$$\lim_{k \to \infty} \int_1^\infty \frac{f_k(x)}{x} d\lambda = \int_1^\infty \frac{f(x)}{x} d\lambda.$$

- 6. (a) State the Baire Category Theorem.
 - (b) Prove there exists a set E of first category in R such that $\lambda(E) > 0$.
- 7. (a) Show that if f and g are absolutely continuous (AC) on [a, b], then $f \cdot g$ is AC on [a, b].
 - 1

(b) Show that if f and g are AC on [a, b] then

$$\int_{a}^{b} fg' d\lambda = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'g d\lambda.$$

8. (a) Suppose (X, \mathcal{N}, μ) is a measure space. Show that if E_k is a sequence of sets in \mathcal{N} such that $E_1 \supseteq E_2 \supseteq \cdots$ and $\mu(E_1) < \infty$, then

$$\mu(\cap_{k=1}^{\infty} E_k) = \lim_{k \to \infty} \mu(E_k) \,.$$

- (b) Show by example that the statement in (a) is false if $\mu(E_1) = \infty$.
- 9. Suppose f and g are positive measurable functions on \mathbb{R} , and define $h(x) = \int_{-\infty}^{\infty} f(x-y)g(y)dy$ for $x \in \mathbb{R}$. Show, justifying each step, that

$$\int_{-\infty}^{\infty} e^x h(x) dx = \left(\int_{-\infty}^{\infty} e^x f(x) dx \right) \left(\int_{-\infty}^{\infty} e^x g(x) dx \right).$$

- 10. (a) Let μ and ξ be measures on a σ -algebra \mathcal{N} of subsets of X. Prove that if $\xi \ll \mu$ and $\xi \perp \mu$, then $\xi(E) = 0$ for all $E \in \mathcal{N}$.
 - (b) State the Lebesgue Decomposition Theorem for measures.