Qualifying/Review Exam in Topology 8-22-90

INSTRUCTIONS: There are eight problems labelled I through VIII. For each problem you should work just one part labelled as 1,2, etc. You may work additional parts if extra time is available.

- I. 1. Let X be a topological space and let Y be a subset of X endowed with the subspace topology.
 - (a) If \mathcal{B} be a basis for the topology on X, show that $\{U \cap Y \mid U \in \mathcal{B}\}$ is a basis for the subspace topology on Y.
 - (b) Which of the following four properties hold for Y whenever they hold for X? second countability; local connectedness; regularity; normality. (Prove or describe a counterexample.)
- II. 1. (a) Show that a closed subset of a compact space is compact.
 - (b) Let $f: X \to Y$ be a continuous bijection where X is compact. If Y is a Hausdorff space then f is a homeomorphism.
 - (c) Does the result of (b) still hold if one only assumes that Y is a space in which all singletons are closed?
- III. 1. A non-Euclidean topology known as the Zariski topology can be put on \mathbb{R}^n by declaring a set C to be closed iff there is a set (possibly empty) of polynomials in n variables with real coefficients such that C is the set of points in \mathbb{R}^n on which all of the polynomials vanish.
 - (a) Verify that this describes a topology on \mathbf{R}^n .
 - (b) For n = 1 show that the Zariski topology is a familiar topology on **R**.
 - (c) Show that the Zariski topology on \mathbb{R}^n is not Hausdorff. (hint: consider a coordinate axis.)
 - 2. Let X be an uncountable set and $x_0 \in X$. A topology is given by declaring a set $C \subset X$ to be closed iff either C is countable or $x_0 \in C$.
 - (a) Verify that this describes a topology on X.
 - (b) The topology is T_2 .
 - (c) The topology is not metrizable.
- IV. 1. (a) Prove that a path connected space is connected.
 - (b) Let $X = \{a, b, c\}$ be given the topology $\tau = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$. How many path components and how many components does X have?
 - 2. Let X be locally connected, and let $f: X \to Y$ be a closed continuous surjection. Show that Y is locally connected.
- V. 1. Let X be a metric space, $A \subset X$ and $x \in X$. Show that x is in the closure of A if and only if there is a sequence (a_n) in A which converges to x.

- VI. 1. (a) State Urysohn's Metrization Theorem.
 - (b) Let $f: X \to Y$ be a continuous function where X is a compact metric space and Y is a Hausdorff space. Show that f(X) is metrizable.
 - 2. (a) State Urysohn's Lemma.
 - (b) Let X be a connected normal space, and let A be a proper closed subset of X. Show that there is a continuous surjection $f: X \to S^1$ such that f(a) = 1 for all $a \in A$.
- VII. 1. Let X be a topological space and suppose that there is a retraction r of X onto a subspace A. (This means that $r: X \to A$ is a continuous function and that r(a) = a for all $a \in A$.)
 - (a) Show that r is a quotient map.
 - (b) Prove that every continuous function from A to a space Z extends to a continuous function from X to Z.
 - (c) If X is Hausdorff then A is closed.
 - (d) If $i: A \to X$ is the inclusion map and $a_0 \in A$ then $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ is one-to-one.
 - (e) There is no retraction from a projective plane to a circle.
 - 2. (a) Show that S^{n-1} is a deformation retract of $\mathbb{R}^n \{0\}$ for $n \ge 1$.
 - (b) Show that \mathbf{R}^2 is not homeomorphic to \mathbf{R}^n where $n \neq 2$.
 - (c) A theorem known as *Invariance of Domain* asserts that if A and B are subsets of \mathbb{R}^n and $f: A \to B$ is a homeomorphism then $f(Int(A)) \subset Int(B)$. Use Invariance of Domain to deduce that \mathbb{R}^n is homeomorphic to \mathbb{R}^m if and only if m = n.
- VIII. 1. Let $p: \widetilde{X} \to X$ be a covering space where X is path connected. Show that the sets $p^{-1}(x)$ have the same cardinality for each $x \in X$.
 - 2. Let $p: \widetilde{X} \to X$ be a covering space with $p(\widetilde{x}) = x$. Assume that \widetilde{X} and X are path connected and locally path connected.
 - (a) State the Lifting Theorem of covering space theory.
 - (b) If $p_*: \pi_1(X, \widetilde{x}) \to \pi_1(X, x)$ is surjective what conclusion can be drawn about p?
 - (c) Give a condition on the space X that ensures that every covering space p, as above, is a homeomorphism.
 - 3. Let $T = S^1 \times S^1$ be a 2-dimensional torus, and let x and y be distinct points in T.
 - (a) Describe $\pi_1(T-x,y)$.
 - (b) Describe $\pi_1(T, y)$ by using Van Kampen's Theorem and part (a).