Qualifying Exam in Topology

May, 1993

Instructions: Work as many problems as you can. Justify your answers with clear and concise arguments.

- 1. State the following theorems:
 - a) Baire Category
 - b) Brouwer Fixed-point
 - c) Tychonoff Compactness
 - d) Tietze Extension
 - e) Urysohn Metrization
- **2.** Let X be a metric space. Prove that:
 - a) For any $A \subseteq X$, $d(x, A) = \inf\{d(x, a) \mid a \in A\}$ defines a continuous function from X to \mathbb{R} .
 - b) $\overline{A} = \{x \in X \mid d(x, A) = 0\}$
 - c) X is a normal topological space.
- **3.** Given a function $f: X \to Y$, show that f is continuous if any of the following hold:
 - a) For every x in X there is an open $U \subseteq X$, containing x, so that $f|_U$ is continuous.
 - b) $X = \bigcup_{i=1}^{n} A_i$ where A_i is closed and $f|_{A_i}$ is continuous for i = 1, 2, ..., n.
 - c) $X = \bigcup_{\alpha \in \Lambda} A_{\alpha}$ where A_{α} is closed, $\{A_{\alpha}\}_{\alpha \in \Lambda}$ is a locally finite collection of closed subsets and $f|_{A_{\alpha}}$ in continuous for each $\alpha \in \Lambda$.

4. Prove:

- a) A subspace of a normal space is completely regular.
- b) A locally compact Hausdorff space is completely regular.

(Hint: Consider the one-point compactification.)

5. Let A be a subspace of a regular space X. Show that X/A is Hausdorff if and only if A is closed.

- 6. For each of the following pairs of spaces, prove or disprove that the two spaces are homeomorphic:
 - a) (0,1) and $(0,\infty)$
 - b) [0,1) and [0,1]
 - c) (0,1) and [0,1)
 - d) [0,1] and $[0,1] \times [0,1]$
 - e) $[0,1) \times [0,1]$ and $[0,1) \times [0,1)$.

(If the formula needed to describe a homeomorphism is complicated, a clearly explained sequence of pictures is acceptable.)

- 7. Let D be the metric on $\prod_{i=1}^{\infty} [0, \frac{1}{3^i}]$ defined by $D((x_i), (y_i)) = \sup\{|x_i y_i|\}$ (do not prove that D is a metric).
 - a) Prove that D induces the product topology.
 - b) Prove that the restriction of the function $f:\prod_{i=1}^{\infty}[0,\frac{1}{3^i}] \to [0,1]$ defined by $f(x_1, x_2, \ldots) = 2\sum_{i=1}^{\infty} x_i$ to the subset $\prod_{i=1}^{\infty} \{0, \frac{1}{3^i}\}$ is a homeomorphism onto the Standard Cantor set.
- 8. Prove that a homotopy equivalence $f: X \to Y$ induces a one-to-one correspondence between the path components of X and Y.
- **9.** Show that for n > 1 there are no essential maps:
 - a) S^n to S^1 ,
 - b) S^1 to S^n .
 - (You may use the fact that S^n is simply connected for n > 1.)
- 10. Prove the following weak version of the Seifert-van Kampen theorem: If $X = U \cup V$ where U, V are open, $U \cap V$ is path connected and x is in $U \cap V$ then $\pi_1(X, x)$ is generated by the images of $\pi_1(U, x)$ and $\pi_1(V, x)$ in $\pi_1(X, x)$.