Qualifying/Review Exam in Topology 5-17-96

Work problems from each of the four groups I, II, III, IV as indicated. Throughout X and Y will denote arbitrary topological spaces and, unless otherwise specified, the real line \mathbb{R} is assumed to be endowed with the Euclidean topology. Also, \mathbb{Q} denotes the set of rational numbers, $\mathbb{J} = \mathbb{R} - \mathbb{Q}$ and \mathbb{C} is the set of complex numbers.

I. For the problems in this group, carefully define each topological term which appears, then verify the statement.

- 1. The collection $\mathcal{B} = \{ (a, b) \mid a, b \in \mathbb{R} \} \cup \{ \{x\} \mid x \in \mathbb{J} \}$ forms a basis for a topology on the real line \mathbb{R} .
- 2. A compact Hausdorff space is regular.
- 3. A contractible space X has trivial fundamental group $\pi_1(X, x_0)$ for any $x_0 \in X$.
- **II.** Work 4 of the 6 problems from this section.
 - 4. Let C be a component of X.
 - a. Show that C is closed.
 - b. If X is locally connected then C is open.
 - c. In general C may not be open.
 - 5. A function $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for each $A \subset X$.
 - 6. Show that every nonconstant path in the Euclidean plane \mathbb{R}^2 contains a point one of whose coordinates is rational and a point one of whose coordinates is irrational.
 - 7. Show that $\pi_1(X \times Y, x_0 \times y_0)$ is isomorphic to $\pi_1(X, x_0) \times \pi_1(Y, y_0)$.
 - 8. A connected metric space with more than one element is uncountable.
 - 9. Let X be the subspace of the Euclidean plane which is the union of $\{0\} \times [-1,1]$ and $\{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 < 2\}.$
 - a. Determine the fundamental group of X.
 - b. Briefly explain why the "figure eight" is a deformation retract of X.

III. Determine whether the following are true or false. In each case, provide either a proof or a counterexample as appropriate. (Be sure to explain the counterexample.)

- 10. The topology on \mathbb{R} given in problem # 1 is metrizable.
- 11. Let X be a first countable space and let A be a closed subset of X. Then $x \in A$ if and only if there is a sequence x_n in A which converges to x.
- 12. Let $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$. The inclusion of S^1 into $\mathbb{C} \{ (\frac{1}{2}, 0) \}$ is a homotopy equivalence.
- 13. A locally compact Hausdorff space is regular.
- IV. Work 2 of the 3 problems in this section.
- 14. A function $f: X \to \mathbb{R}$ is said to be *lower semicontinuous* if $f^{-1}((b, \infty))$ is open for each $b \in \mathbb{R}$. Let $\{f_{\lambda} \mid \lambda \in \Lambda\}$ be a family of continuous functions from X to \mathbb{R} and suppose that $\{f_{\lambda}(x) \mid \lambda \in \Lambda\}$ is bounded above for each $x \in X$. Define a function $M: X \to \mathbb{R}$ by M(x) = $\sup\{f_{\lambda}(x) \mid \lambda \in \Lambda\}$.
 - a. Show that M is lower semicontinuous.
 - b. Show that M may fail to be continuous.
- 15. Let X be a compact Hausdorff space. Suppose that X has an open cover \mathcal{U} where each $U \in \mathcal{U}$ is metrizable.
 - a. Show that X is metrizable.
 - b. Show by example that if either the assumption that X is compact or the assumption that each $U \in \mathcal{U}$ is open is removed then X may fail to be metrizable.
- 16. Let $p: \widetilde{X} \to X$ and $q: \widetilde{Y} \to Y$ be covering maps.
 - a. Show that $p \times q$ is a covering map from $\widetilde{X} \times \widetilde{Y}$ to $X \times Y$.
 - b. Show that the group of covering transformations $A(\widetilde{X} \times \widetilde{Y}, p \times q)$ of $p \times q$ is isomorphic to $A(\widetilde{X}, p) \times A(\widetilde{Y}, q)$.
 - c. The covering map $p \times q$ is regular if and only if both p and q are regular.