- 1.) Show that if X and Y are connected spaces then so is $X \times Y$.
- 2.) Prove: A retract of a Hausdorff space X is closed in X. What if X is not Hausdorff?
- 3.) Prove:
 - a) If $f: X \longrightarrow Y$ is continuous and proper with X, Y locally compact Hausdorff spaces then f is closed.
 - b) If $f: \mathbb{R} \longrightarrow X$ is a proper embedding with X a locally compact metric space then $f(\mathbb{R})$ is a retract of X.
- 4.) Show that $f: X \longrightarrow Y$ is continuous if $f|_{F_{\alpha}}$ is continuous $\forall \alpha \in \Lambda$ where $\{F_{\alpha}\}_{\alpha \in \Lambda}$ is a locally finite covering of X by closed sets.
- 5.) Prove or disprove:
 - a) If X and Y are homeomorphic metric spaces and X is complete then Y must be.
 - b) If F_{α} is a closed subspace of $X_{\alpha} \ \forall \alpha \in \Lambda$ then $\prod_{\alpha \in \Lambda} F_{\alpha}$ is closed in $\prod_{\alpha \in \Lambda} X_{\alpha}$.
 - c) If X_{α} is a locally compact Hausdorff space $\forall \alpha \in \Lambda$ then so is $\prod X_{\alpha}$.
 - d) \mathbb{CP}^1 is homeomorphic to the one-point compactification of \mathbb{C} .
- 6.) Find all 3-fold covers of the figure 8 (i. e. the underlying topological space of the symbol ∞) up to equivalence, indicating which are regular.
- 7.) Let G be a finite group acting freely on S^n , n > 1, and let S^n/G be the quotient space. Show that any continuous $f: S^n/G \longrightarrow S^1$ is homotopically trivial.
- 8.) For continuous $\sigma: I \longrightarrow S^1$, let $D(\sigma) = \tilde{\sigma}(1) \tilde{\sigma}(0)$ where $\tilde{\sigma}: I \longrightarrow \mathbb{R}$ is a lift of σ . Prove:
 - a) D is well-defined.

 - b) If $f: S^1 \longrightarrow S^1$, $q(t) = e^{2\pi i t}$ then D(fq) is an integer. c) If $f, g: S^1 \longrightarrow S^1$ and f is homotopic to g then D(fq) = D(gq).
 - d) If $f: S^1 \longrightarrow S^1$ then f is homotopic to the function that sends z to $z^{D(fq)}$.
- 9.) Let $U = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid z_0 \neq 0 \}$ and $V = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid (z_1, z_2) \neq 0 \}$ (0,0). Show:

1

- a) U is homeomorphic to \mathbb{C}^2 .
- b) V is homotopy equivalent to \mathbb{CP}^1 .
- c) \mathbb{CP}^2 is simply connected.