TOPOLOGY

Qualifying Review Exam May 14, 1999

1. Prove: A closed map is a quotient map.

2. Prove: Let X be a compact space, \mathcal{U} be an open covering of X. Then there exists a partition of unity dominated by \mathcal{U} .

3. Let (X, d) be a metric space.

P rove: If X is complete and totally bounded (for every $\epsilon > 0$, there exists a finite covering of X by ϵ -balls), then X is sequentially compact.

G ive an example showing totally bounded in the statement (1) cannot be replaced by bounded.

4. Using only the definition of "compactness", prove: The closed interval $I = [0, 1] \subset \mathbb{R}$ is compact.

5. A subspace S of X is called a **retract** of X if there exists a continuous map $r: X \to S$ such that $r \circ i$ is homotopic to 1_S . Prove: The equator S^1 of the sphere S^2 is not a retract of S^2 .

6. Let *T* be the torus, *M* be a closed disk. Form a connected sum X = T # M. [That is, remove open disks $D_1 \subset T$ and $D_2 \subset M$, and glue a cylinder $S^1 \times I$ by homeomorphisms $S^1 \times \{0\} \xrightarrow{\cong} \partial D_1$ and $S^1 \times \{1\} \xrightarrow{\cong} \partial D_2$, where ∂ means the boundary]. Describe *X* homotopically, and calculate the fundamental group of *X*.

1