Instructions: Do as many problems as you can. Please justify your answers and show your work. All rings are associative with 1.

1. Prove or disprove:

(a) If H and K are subgroups of finite index in a group G then $H \cap K$ also has finite index in G.

Let $f: R \to S$ be a ring homomorphism.

(b) If I is a prime ideal of S then $f^{-1}(I)$ is a prime ideal of R.

(c) If I is a maximal ideal of S then $f^{-1}(I)$ is a maximal ideal of R.

2. Let K be a normal subgroup of a finite subgroup G. Assume n = [G : K] is relatively prime to |K|. Show that $K = \{x^n : x \in G\}$. What if K is not normal in G?

3. Prove: (a) If G is a group of order 12 then G is not simple.

(b) If G is a group of order p^2q , where p and q are distinct primes, then G is not simple.

4. If I and J are ideals of a ring R and I + J = R, prove that R/IJ is isomorphic to $R/I \times R/J$.

5. Show that an element a of a commutative ring A is nilpotent (i.e., $a^k = 0$ for some positive integer k) if and only if a is contained in every prime ideal of A.

6. If M is a finitely generated module over a Noetherian ring and $f: M \to M$ is an epimorphism, prove that f is an automorphism.

7. prove that any square matrix (over any field) is similar to its transpose.

8. Prove: (a) If G is a finite non-cyclic abelian group then there is a positive integer k < |G| such that $g^k = e$ (e is the identity of G), for every $g \in G$. (b) Every finite multiplicative subgroup of the the group of non-zero elements of a field is cyclic.

9. Let \mathbb{E} be the splitting field of $x^4 - 4x^2 + 2$ over \mathbb{Q} . Find all intermediate fields \mathbb{K} between \mathbb{E} and \mathbb{Q} .

1

10. Let $\omega_n = e^{2\pi i/n}$.

(a) Describe the action of $Gal(\mathbb{Q}(\omega_n)/\mathbb{Q})$ on $\mathbb{Q}(\omega_n)$.

(b) Show that any subfield of $\mathbb{Q}(\omega_n)$ is Galois over \mathbb{Q} .