Syllabus for 2004 Qualifying Exam in Topology

- 1. Fundamentals
 - a. topology on a set, basis and subbasis for a topology
 - b. subspace topology, product topology, quotient topology
 - c. continuity, uniform continuity, homeomorphisms, quotient maps
 - d. closure, interior, limit points, convergence of sequences
 - e. metric spaces, metrization theorems
- 2. Connectedness
 - a. connectedness, local connectedness, components
 - b. path-connectedness, local path-connectedness, path components
 - c. preservation of connectedness under continuous maps, unions, products, etc.
- 3. Countability and Separation Axioms
 - a. first countable, second countable, separable
 - b. Hausdorff, regular, completely regular, normal
 - c. Urysohn's Lemma, Tietze Extension Theorem
- 4. Compactness
 - a. compactness, local compactness, compactification
 - b. limit point compactness, sequential compactness, Lebesgue numbers
 - c. preservation of compactness under continuous maps, unions, products, etc.
 - d. Tychonoff's Theorem
- 5. Complete Metric Spaces, Function Spaces
 - a. completeness, completion, total boundedness
 - b. Baire spaces
 - c. compact-open topology on function spaces
 - d. evaluation map, exponential correspondence
- 6. Fundamental Groups and Covering Space Theory
 - a. homotopy of maps, homotopy of paths, fundamental group, Van Kampen's Theorem
 - b. homotopy equivalence, contractibility, deformation retraction
 - c. covering spaces, path lifting, regular covering spaces, subgroup correspondence theorem
- 7. Examples
 - a. $S_{\Omega}, \overline{S}_{\Omega}$
 - b. lower limit topology, cofinite topologies, Cantor sets
 - c. countable and uncountable products of [0,1], \mathbb{R}
 - d. manifolds, classification of surfaces

References:

Topology: A First Course by J. Munkres Algebraic Topology: An Introduction by Wm. Massey Chapter 1 of Algebraic Topology by Allen Hatcher, available at http://math.cornell.edu/~hatcher/#ATI