
January 11, 2016 Topology Qualifying Examination 8:30am–11:30am

Instructions. Answer all three of Q1–Q3, and answer any three of Q4–Q7. This is six problems in 3
hours, so you should aim for an upper limit of 25–30 minutes per problem.

Q 1. Quotient Spaces.

(a) Give the definition of a quotient map q : X → Y between topological spaces.

(b) Let X be a topological space and ∼ be an equivalence relation on X. Give the definition of the
quotient space X/ ∼ of X by ∼.

(c) Let q : X → Y be a quotient map, and f : X → Z be a continuous map which is constant on
the fibers (point preimages) of q. What can you conclude in this situation? (no proof necessary)

(d) State a theorem about a continuous bijection from a compact to a Hausdorff space. (no proof
necessary)

(e) Let Y be the quotient space of the unit disk D2 = {(x, y) ∈ R2|x2 + y2 ≤ 1} (with the
subspace topology inherited from R2) obtained by identifying all points on the boundary circle
{(x, y) ∈ R2 | x2 + y2 = 1}. Give a detailed proof that Y is homeomorphic to the unit sphere
S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} (with the subspace topology inherited from R3). Give
statements of results that you use in your proof.

Q 2. Let {Xα|α ∈ J} be a non-empty indexed family of topological spaces.

(a) Define the product topology on X =
∏

α∈J Xα.

(b) Prove that the projection maps pα : X → Xα are continuous.

(c) State a criterion (in terms of the projection maps pα) for a map f : Z →
∏

α∈J Xα to be
continuous.

(d) Define what it means for a topological space to be path-connected.

(e) Prove that if each Xα is a path-connected space, then X =
∏

α∈J Xα is path-connected.

Q 3. Compactness.

(a) Define what it means for a topological space to be compact.

(b) Prove that a closed subspace of a compact space is compact.

(c) State the Tychonoff theorem. (no proof necessary)

(d) Let {Xα | α ∈ J} be a non-empty indexed family where each Xα = R with the standard
topology, and let X =

∏
α∈J Xα have the product topology.

(i) Prove or give a counterexample: “If C is a subspace of X whose projection to each Xα is
closed and bounded, then C is compact.”

(ii) Prove or give a counterexample: “If C is a closed subspace of X whose projection to each
Xα is closed and bounded, then C is compact.”



Q 4. Simply-connected.

(a) State (no proof necessary) the Lebesgue number Lemma for compact metric spaces.

(b) Define what it means for a topological space to be simply-connected.

(c) Suppose that a topological space X = A ∪ B where A and B are simply-connected open
subspaces and A ∩B is non-empty and path-connected. Prove that X is simply-connected.

(d) Suppose that a topological space X = A ∪ B where A and B are simply-connected, A is an
open subspace, B is a closed subspace, and A ∩ B is non-empty and path-connected. Give an
example, which shows that X need not be simply-connected.

Q 5. Fundamental Group and Applications.

(a) What does it mean to say that the fundamental group is a functor from the category of topo-
logical spaces and continuous maps to the category of groups and homomorphisms. (There are
two key properties).

(b) Give the definition of a retraction of a topological space X onto a subspace A.

(c) Give a proof that there is no retraction from the disk D2 = {(x, y) ∈ R2 |x2 + y2 ≤ 1} to its
boundary circle ∂D2 = S1. State any major results that you use in your proof.

(d) Prove that R2 is not homeomorphic to R3. Here each space has the standard (euclidean)
topology. State any results in class that you use in your proof.

Q 6. π1 and covering spaces.

(a) Determine the fundamental groups of the following wedge products (one-point identifications)
of spaces:

S2 ∨ S2 , P 2 ∨ S2 , P 2 ∨ P 2 , T 2 ∨ S2 .

The component spaces are as follows: S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1} is the 2–sphere,
P 2 is the real projective plane, and T 2 = S1 × S1 is the 2–torus.

Recall that P 2 can be defined as the quotient space of S2 by the antipodal map equivalence
relation (x, y, z) ∼ (−x,−y,−z).

You are free to use any known results from class notes about the fundamental groups of the
2–sphere, the projective plane and the 2–torus. State the name of the theorem that you use to
compute the fundamental groups of wedge products of spaces.

(b) Draw/describe the universal covering spaces of each of the 4 wedge product spaces listed above.



Q 7. Covering spaces of the wedge of two circles.
Consider the wedge of two circles X = S1 ∨ S1 whose fundamental group π1(X, x0) is the free group

F (a, b) on {a, b}. In each part below, you are asked to draw covering spaces ρ : X̃ → X with the
indicated properties.

(a) An infinite sheeted regular covering space.

(b) An infinite sheeted covering space which is not regular.

(c) A 3–fold covering space which is regular.

(d) A 3-fold covering space which is not regular.

(e) The image ρ∗(π1(X, x0)) is the normal subgroup generated by {a2, b}.

(f) The image ρ∗(π1(X, x0)) is the normal subgroup generated by {a3, b2, aba−1b−1}.


